Ventilation Systems

Heat Recovery Ventilators Energy Recovery Ventilators

Copy of this information available at: keyesweb.com/ventilation

All buildings breathe–exchange air between the interior and exterior. The rate of air exchange is affected by many factors including:

- The quality of the envelope (all the exterior surfaces)*
- Quality of vents/flues (bathroom and kitchen fans heating units, fireplaces, etc.)*
- The temperature delta between the interior and exterior
- The humidity delta between the interior and exterior
- Wind speed and direction
- Building height

Within this list, the quality of the envelope and the quality of the vents/flues are the factors we can reasonably control.

Although these and other factors contribute to making every building unique, it can be generally assumed that the older the building the weaker the envelope–although we've all experienced exceptions.

Bathroom 50 - 100 CFM Range 300 - 1,200 CFM Clothes Dryer 100- 200 CFM

Exhaust systems remove contaminated air from the building. In the systems shown above, the air exhausted is replaced indirectly, usually through infiltration.

Heat and energy recovery ventilators exhaust air from the building while providing replacement fresh air. The ventilator uses an exchanger to transfer heat (and moisture in an ERV) between the exhaust and make-up replacement air.

Definitions

Name	Description	Units	Notes
ACH	Air changes per hour	AC / hour	
CFM	Cubic feet per minute	ft ³ / minute	
CFH	Cubic feet per hour	ft ³ / hour	
Area	Conditioned floor area	ft ²	
Volume	Conditioned volume	ft ³	
Density	Occupancy density	Number of people	Number of bathrooms + 1
HRV	Heat recovery ventilator		Sensible heat exchange
ERV	Energy recovery ventilator		Sensible and latent heat
			exchange

Sample Calculation

Sample Residence Data Total conditioned space: 3,000 sq. ft. with 7.5 ft ceilings Three bedrooms: Occupancy density 3 + 1 = 4Total cubic volume: 3,000 ft² x 7.5 ft = 22,500 ft³

ASHRAE Standards

Formula factors the total conditioned floor area and occupancy density based on the number of bedrooms. Based on our sample residence:

CFM = $[0.03 \text{ x conditioned floor area ft}^2] + [7.5 \text{ x (no. bedrooms + 1)}]$ CFM = $[0.03 \text{ x } 3,000 \text{ ft}^2] + [7.5 \text{ x } 4]$ CFM = [90] + [30] = 120 CFM

Sample Calculation

Sample Residence Data Total conditioned space: 3,000 sq. ft. with 7.5 ft ceilings Three bedrooms: Occupancy density 3 + 1 = 4Total cubic volume: 3,000 ft² x 7.5 ft = 22,500 ft³

Massachusetts Building Code from the International Mechanical Code Two formulas are used, one based on conditioned volume and one based on occupancy density. The code states using the conditioned volume formula but no less than the occupancy density calculation.

Conditioned volume calculation CFH = 0.35 ACH x conditioned volume $CFH = 0.35 \text{ ACH x } 22,500 \text{ ft}^3$ $CFH = 7,875 \text{ ft}^3 / \text{hour}$ CFM = CFH / 60 min/hr $CFM = [7,875 \text{ ft}^3 / \text{hour}] / [60 \text{ min/hr}] = 131 \text{ CFM}$

Sample Calculation

Sample Residence Data Total conditioned space: 3,000 sq. ft. with 7.5 ft ceilings Three bedrooms: Occupancy density 3 + 1 = 4Total cubic volume: 3,000 ft² x 7.5 ft = 22,500 ft³

Massachusetts Building Code from the International Mechanical Code Two formulas are used, one based on conditioned volume and one based on occupancy density. The code states using the conditioned volume formula but no less than the occupancy density calculation.

Occupancy density calculation $CFM = 15 \ CFM \ per \ Occupant$ $CFM = [\ 15 \ ft^3 / minute \] x [\ 4 \] = \underline{60 \ CFM}$

Therefore the required ventilation using the Mass Building code is 131 CFM, which is greater than the 60 CFM calculated density calculation.

Sample Calculation

The ASHRAE and Mass Building Code calculations suggest ventilation rates of 120 CFM and 131 CFM respectfully.

Readily available residential HRVs and ERVs range from 40 to 300 CFM.

Keyes North Atlantic, Inc keyesweb.com March 2019

Ventilator intake hood - where fresh air enters the system

The condition of that intake hood

Interior of the ventilator - intake chamber

Year Round Operation

An HRV's exchange medium transfers **only heat** the between the exhausting stale air and the incoming fresh air.

An ERV's exchange medium transfers **both heat and moisture** between the exhausting stale air and the incoming fresh air.

